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Abstract: The dynamic behavior of two unequal parallel permeable interface cracks in a
Dpiezoelectric layer bonded to two half-piezoelectric material planes subjected to harmonic
anti-plane shear waves is investigated . By using the Fourier transform , the problem can be
solved with the help of two pairs of dual integral equations in which the unknown variables
were the jumps of the displacements across the crack surfaces. Numerical results are
presented graphically to show the effects of the geometric parameters, the frequency of the
incident wave on the dynamic stress intensity factors and the electric displacement intensity
Jactors . Especially , the present problem can be returned to static problem of two parallel
permeable interface cracks. Compared with the solutions of impermeable crack surface
condition , it is found that the electric displacement intensity factors for the permeable crack
surface conditions are much smaller .
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Introduction

Due to the intrinsic electro-mechanical coupling behavior, piezoelectric materials are very
useful in electronic devices. However, most piezoelectric materials are brittle such as ceramics
and crystals. Therefore, piezoelectric materials have a tendency to develop critical cracks during
the manufacturing and the poling processes. So, it is important to study the electro-elastic
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interaction and fracture behaviors of piezoelectric materials.

The increasing attention to the study of crack problems in piezoelectric materials has led to a
lot of significant works. Pak!! and Chen and Yul? studied a single crack problem under the
static and dynamic conditions, while Meguid and Wangm investigated the dynamic interaction
between two cracks in a piezoelectric medium under incident anti-plane shear wave loading. Soh,
Fang and Lee!*!, and Li and Tang[S] studied the interacting crack problem. Narita, Shindo and
Watanabe!®! also examined a piezoelectric layer with an anti-plane shear crack bonded to two
elastic half-planes. Zhou and Wang!"'%! investigated the static behavior of two parallel symmetry
permeable cracks in piezoelectric materials, and interface cracks in a piezoelectric layer bonded to
two half piezoelectric materials planes. To our knowledge, the dynamic electro-elastic behavior of
two unequal parallel permeable interface cracks in a piezoelectric layer bonded to two half
piezoelectric materials planes has not been studied.

In present paper, the dynamic Mode-IlI crack problem for the interaction between two
unequal parallel interface cracks subjected to the harmonic anti-plane shear waves in piezoelectric
materials is considered by use of the Schmidt method (Morse!®!, Yan'')), By using the Fourier
transform, two pairs of dual integral equations are obtained, and they can be solved by use of the
Schmidt method. Some numerical results are presented graphically to show the effects of the
geometric parameters, the frequency of the incident wave on the dynamic stress intensity factors
and the electric displacement intensity factors.

1 Problem Statement

It is assumed that there is a sort of piezoelectric interlayer with 2k in thickness, and which is
bonded by another two half piezoelectric material planes. Two parallel interface cracks with
different lengths (2a,2b) are located along the bonding line. A Cartesian system (x,y,z) is
positioned with its origin at the center between the cracks for reference purpose. Note that the
z-axis is oriented in the poling direction of the piezoelectric materials, and the x-y plane is the
transversely isotropic plane, x = 0 is a plane of geometric symmetry. To simplify the calculation,
in this paper, note superscript k(k = 1,2,3,4) refers to the upper half plane 1, the layer 2, the
layer 3 and the lower half plane 4 as shown in Fig.1, y
respectively. It is also assumed that the material of T

the upper half plane 1 is the same as the material of a a

the lower half plane 4, the material of the layer 2 is | [ ¢ 2

the same as the material of the layer 3. In this paper, X , O A 4
the harmonic anti-plane shear wave is vertically h > 3
incident. The mechanical field corresponding to a \ 34

steady state incident elastic wave can be expressed in

terms of the frequency w, such that z'y,(x,y,t) =
Fig.1 Two unequal parallel interface

roe . For the sake of convenience, the time
cracks in piezoelectric materials

dependence of all field quantities assumed to be of the
form e~** will be suppressed and we only consider that r, is positive.

The dynamic anti-plane governing equations for piezoelectric materials are given by
2w
e 720 ® 4 off y24P = p

(1)
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e§5k) V2w(k) _ €§1k) V2¢(k) =0, (2)
in which v 2 = 32/3x* + 3%/ y? is the two-dimensional Laplacian operator, »‘* and $‘*) are the
mechanical displacement and the electric potential, while p(") , cﬂ‘ ) , (") and e“‘ ) are the mass
density, shear modulus, piezoelectric coefficient and dielectric parameter of the materials,
respectively .

The constitutive equations of the piezoelectric materials are

B = P wh 4 P, (3)
DY = o u® P4, @

where (8, w8, 88 and D{P (j = x,y) are the stress, strain, electric field strength and

electric displacement tensors, respectively. The wave velocity is defined as B = /,at" )/ p“‘ ),
where ¥ = P + (! "))Z/e(") Owing to the symmetry in geometry and loading, it is
sufficient to consider only the right side of the planes x = 0, | y | < .
The boundary conditions of the problem can be stated as follows:
{T(yl)(x,h,t) <2)(x hot), 8V (x,h,t) = $P(x,h,t),

0; 5
D (x,h,1) = DP(x,h,1), i (5)
{W(Z)(xvoyt) = w(3)(x10’t)9 Tglf)(xyoyt) (3)(.’)6 O t)’ 0 (6)
$(2,0,¢) = $(2,0,¢),D? (x,0,1) = D (x,0,1), v

e (x, ~h,t) = 1@ (x, <h,1),

$ (x, ~h,t) = $(x, -h,t), x > 03 (7
D (x, ~h,1) = D (x, -h,1),

(%, h,8) = TP (2, h,1t) = -7, 0< < a; (8)
(3)(x, -h, t) (y‘,‘)(x, —h,t) ____Toe—iw(Zh/cz), 0< = < b; (9)
wP(x,h,t) = w?P(x,h,t), x> a; (10)
wP(x, h,t) = w*P(x, -h,t), x> b. (11)
Assume that the solutions of Eqs. (1) and (2) are as follows:
w(l)(x,y,t) = %J Al(s)e'y(l)ycos(s‘x)ds,
0
\ e 9 (12)
¢(”(x,y,t) = %w(l)(x,y,t) + ?J Ci(s)e cos(sx)ds;
L €11 0
) 2 «° _y(z) y(z)
w(x,y,t) = "‘J [Ay(s)e™” 7 + By(s)e” "]cos(sx)ds,
) ) (13)

$ (x,y,t) = % ()(x yyt) +—J [C,(s)e ™ + Dy(s)e”]cos(sx)ds;
~ 1

w® (x,y,1) —f [Ag(S)e’ 'y +Bg(S)e'7 y]cos(sx)ds,
m)o

1 e 5 o (14)
¢(3)(x,y,t) = ——g‘)—w(s)(x,y,t) + }—J [ C3(s)e” + D3(s)e " Jcos(sx)ds;

w® (x,y,t) = %J A (s)e” )7cos(sx)ds,

) oD (15)
$W (x,y,1) = jiy w® (x,y,t) +—f C,(s)ecos(sx)ds,

11
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where (Y#)? = s - w?/ck, & = 4B/ P, 1B = P 4 (P /elP . a,(s),
B,(s),C,(s),D,(s) are unknown functions.
So, substituting Egs.(12) ~ (15) into Egs.(3) and (4), we obtain

® [¢}]
el = - EJ {74, (s)e” 7 + e sC,(s)e 7 Yeos(sx)ds,
5 : (16)
D§1) = ~J efll)sCl(s)e""cos(sx)ds;
nJo
[+ == 2O L) By()e” 7
0
3 ePs[Cy(s)e™ — Dy(s)e” ] }cos(sx)ds, a7n
D = %J e s[Cy(s)e™ = Dy(s)e” Icos(sx)ds;
@ 2} (2
(rg,f) = %J {p® YD [A5(s)e” 7 = By(s)e™? )y]+
0
1 95?5[ C3(s)e” — D3(s)e™] }cos(sx)ds, (18)
\D(y” =- %L ePs[C3(s)e” ~ Dy(s)e™ Jcos(sx)ds;
% )
¥ = %J [P yD A (s)e” 7 + ePsC,(s)e” Yeos(sx)ds,
(19)

Dg“) =—£I el(f)sC4(s)e”cos(sx)ds.
TJjo

To solve the problem, the gap functions of the crack surface displacements are defined as
follows :
filx) = w(x,h,t) - wP(x,h,t), (20)
folx) = w¥ (%, ~h,t) - 0P (x, ~h,t). (21)
Substituting Eqs.(12) ~ (15) into Eqs.(20) ~ (21), and applying Fourier cosine transforms
(a superposed bar indicates the Fourier cosine transforms throughout the paper) with the boundary
conditions (5),(7),(10) and (11), it can be obtained

Fi(s) = A (s)e ™ = ay(s)e b~ By(s)e kb, (22)
ﬁ<>=Axn€”h+&un”h-m<n4”, (23)
(1) ,

e " ) @)
%Al(s)e'y Py Ci(s)e™™ ~ T[Az( s)e”” b w By(s)e” *]-

[C(s)e™* + D,(s)e™] = 0, (24)
(2) (2) 2)
%[As(ﬂe" P+ By(s)e” "]+ [Cy(s)e™™ + Dy(s)e™] -
6%) _)'“)h ~sh
(1)A4( s)e - C4(s)e™™ = 0. (25)

By applying Fourier cosine transforms to Egs.(16) ~ (19) with boundary conditions (5) ~
(11), it can be obtained

(1
#(1) YDA, (s)e? b + e sC (s)e
(2) (2}
= uPyP[4,(s)e” * - By(s)e” M4 ePs[C(s)e” ~ Dy(s)e™], (26)
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@ (2}
#(2)7(2)[143(8)(3—7 B B3(s)e7 h]+ ef?s[@(s)e"” _ D3(s)e""]

D YDA, (5)e T E 4 el sCy(s)e (27)
el Ci()e™ = eP[C(s)e™ - Dy(s)e],
eP[C3(s)e™* - Dy(s)e™] = e Co(s)e (28)

A(s) + By(s) = A3(s) + B3(s), A,(s) = B,(s) = - A4;(s) + B;(s), (29)

C,(s) + Dy(s) = C3(s) + D3(s), C,(s) = Dy(s) =~ C3(s) + Dy3(s). (30)

By solving twelve Eqs. (22) ~ (30) with twelve unknown functions A,(s), B,(s),

C.(s), Dy(s), and substituting the solutions into Egs.(16) and (19) and applying the
boundary conditions (5}, (7) ~ (9), it can be obtained

%L:o]l(s)cos(sx)ds =0, x > a, (31)
%J:]‘z(s)cos(sx)ds =0, x> b, (32)
%j:s[a(s)]l(S) + B(s)f2(s)]cos(sx)ds = — g, O<sx<a, (33)

%I: s[B(s)fi(s) + a(s)f,(s)]cos(sx)ds =~ 'z'oe'i“’(”'/czj . 0
where a(s) and B(s) are known functions and given in Appendix.
2 Solutions of the Dual Integral Equations

The set of dual integral Egs. (31) ~ (34) may be solved by use of the Schmidt method. The
gap functions of the crack surface displacement are represented by the following series :

<sx<b, (34)

2\ 172
fl(x)=20P(“21/2)(x)(1—§7) , for O0gsx<a,y =h, (35a)
2\ 12
fz(x)=ZbP§1’22"”( J(1-2)", for 0<x<by=-h, @b

where a, and b, are unknown coefficients to be determined and P{V%? () is a Jacobi

polynomial ( Gradshteyn and Ryzhik'''! ). The Fourier cosine transforms of Eq.(35) are
(Erdelyil?))

]l(s) = %iananZn—l(sa’)’ .?2(3) = %iqunJZn—l(Sb)’ (36)

in which G, = 24/x(- 1)*"'[T'(2n - 1/2)/(2n - 2)!],T(x) and J,, (x) are the Gamma and
Bessel functions, respectively .

Substituting Eq. (36) into Eqs.(31) ~ (34), Egs.(31) and (32) have been automatically
satisfied, respectively. After integration with respect to x in [0,x], where 0 < % < @ in
Eq.(33) and0 < x < b in Eq.(34), the Egs.(33) and (34) are reduced to

Za,,G,,I —i—a(s)]z,,_l(sa)sin(sx)ds +
a=1 0
TTo

Z’;bnG,,j: %ﬂ(s)]z,,_l(sb)sin(sx)d;s == 5%, 0<x<a, (373)

a=1

i a,,G,,Jj —1—,8( $))o,_1(sa)sin(sx)ds +



Interface Cracks in a Piezoelectric Layer 165

Zb"G"J —‘ls—a(s)Jz,‘_l(sb)sin(sx)ds =- Ir;xe'i‘”(zmcz), 0<x< b, (37b)
a=1 0

Egs.(37) can now be solved for the coefficients a, and b, by the Schmidt method (Zhou and
Wangm , Ttou! ! , Zhou, Han and Du! ). The method is omitted in the present work .

3 Field Intensity Factors

The coefficients a, and b, are known, so that the entire stress field and the electric
displacement field can be obtained. From the form of the stress field and the electric
displacement, the singular parts of the stress field and the singular part of the electric displacement
can be expressed respectively as follows:

2a, < 28, &

(1) _ _ c (1) _ _ c

= - "Z:;a,.G,LH,,(x), DY = - "Z:;a,,Gan(x), for x > a, (38a)
2a, < 28. &

4 _ _ c @ _ _ c

r® = — ;bnG"Ln(x), DW = - == Z;bnG,,L,,(x), for x> b, (38b)

n-1_2n-1 n-1p2n-1
where H, (x) = (-1)""a L(x) = (-1D""'b

where y(s), 8(s), a, and &, are given in Appendix.
We obtain the stress intensity factors K, and K as

K, = lim /2x(x — @) =_j_2 Dan 1), (39)
K = linyI(x = 5o = - a5y, Do) (40)
We obtain the electric displacement intensity factors D, and D, as
D, = linVEGr - @00 =-S5, FE IR Beg )
D, = }iI?JErG'—_ISD“‘) =—%§bn£%fil)/2—!)=-z—z—m- (42)

4 Numerical Calculations and Discussion

We carried out numerical calculations for the
piezoelectric ceramic. In the layered siructure,
materials 1 and 2 are piezoelectric ceramic PZT-4
and PZT-5SH as in Fig.1, respectively. The
material constants are listed in Table 1. From Refs.
[9,10], it can be seen that the Schmidt method
performs satisfactorily if the first six terms of the
infinite series (37) are retained. The dimensionless
stress intensity factors (K, ,K,) and the electric
displacement intensity factors (D,,D,) are

Fig.2 The stress intensity factor versus
calculated numerically. The results are shown in hwle; = 0,a = b = 1.0,

Figs.2 ~ 14. PZT-4/PZT-4/PZT-4)
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Table 1 Material constants of piezoelectric ceramic

Materials cag/ (N/m?) eis/(C/m?) € /(C/V-m) ol (kg/m®)
PZT-4 2.56x 10" 12.7 64.6 x 10" 7 500
PZT-5H 2.3 x 10' 17.0 150.4 x 10'° 7 500
20k 8$X 109
1.6F K, /7 6X10°9F Dylzy
§° 1.2 L 5@
4X10-9} Dylr,
0.8 K/t
04f 2X10°9F
02 04 06 08 10 02 04 06 08 10
a a

Fig.3 The stress intensity factor versus
a(h = 0.5,w/c; = 0.5,b =
1.0, PZT-4/PZT-5H/PZT-4)

io i K,/
Ky/ty

0.2 0.4 0.6 0.8 1.0

Fig.5 The stress intensity factor versus
a(h = 1.0, w/c; =0.5,b =
1.0, PZT-4/PZT-5H/PZT-4)

1.5
1.0
K, ity

0.0L
—0.5}¢ Kyity

K/t

-1.0

15— 1 YR L

Fig.7 The stress intensity factor versus
h(a =0.5,wl¢c; =0.5,b =
1.0, PZT-4/PZT-5H/PZT-4)

Fig.4 The electric displacement intensity
factor versus a (h = 0.5, w/c; =

0.5,b = 1.0, PZT-4/PZT-5H/PZT-4)

——

T

1.5X10°8
1.0X 1078

—

5.0X107 D,z

18
D;,I'TO
-1.0X108 1 . L L

Fig.6 The electric displacement intensity

Diz,

factor versus a(h = 1.0, w/e¢, =
0.5,b = 1.0, PZT-4/PZT-5H/PZT-4)

6X107
-5 |
4X10 Dz,
o 2X10°9f
£
Q oF Db/TO
-2X109T
—-4X10°9F L L h
06 08 10 12 14
h

Fig.8 The electric displacement intensity
factor versus h (@ = 0.5,w/¢; =
0.5, b =1.0, PZT-4/PZT-5H/
PZT-4)
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3
2:____/(
e ) K, /7,
X ok

4k Ky,

2755 08 1;';0 12 14

Fig.9 The stress intensity factor

versus h(a = 1.0,w/c; =
0.5,b = 1.0, PZT-4/PZT-
5H/PZT-4)

wlc

Fig.11 The stress intensity factor

versus w/c; (b = 0.5,a =
0.5,b = 1.0, PZT-4/PZT-
5H/PZT-4)

3
00 03 06 09 12 15
wle

Fig.13 The stress intensity factor
versus w/¢,;(h = 1.0,a =
0.5,6 = 1.0, PZT-4/PZT-
5H/PZT-4)

1.5X10°8
1.0X10°8

5.0X1079

Dizy

0

-5.0X1079

_10x]0~3 ! L ! ! 2

Fig.10 The electric displacement inten-
sity factor versus A(ae = 1.0,
wley = 0.5,b = 1.0, PZT-4/
PZT-SH/PZT-4)

1.2X108
8.0X10°°
4.0X10°9

£ o
—-4.0X10-°
-8.0X107?
-1.2X1078 -

060 03 06 09 12 15
a)/C]

Fig.12 The electric displacement inten-
sity factor versus w/c,(h = 0.5,
a =0.5,b =1.0, PZT-4/PZT-
5H/PZT-4)

1.0X 1078
5.0X107
0

ho
Q-50%X10°
Db/TO

-1.0X108

_ -8 ' ! ' 1
LSX10%67 03 06 09 12 1s

w/c,

Fig.14 The electric displacement intensity
factor versus w/¢; (h = 1.0, a =
0.5,b = 1.0, PZT-4/PZT-5H/
PZT-4)

The following observations are very significant:

( i ) The results of the present problem are the same as those in Ref.[7] when ¢ = b and

@ = 0 as shown in Fig.2.



168 SUN Jian-liang, ZHOU Zhen-gong and WANG Biao

('ii ) The results in Figs.3 ~ 6 indicate that K, increases with increase of the length of crack
1. However, K, decreases with increase of the length of crack 1. Especially, when a = 0.24,
the curves intersect in Fig.3, which reveals that K, can be equal to K, in suitable cases even for

a s b. This behavior is caused by the different mechanical boundary conditions at cracks 1 and 2.
(i ) It can be seen that K, increases with increase of the distance between the parallel

cracks. This phenomenon is called crack shielding effect (Ratwanil'®1) . However, K, decreases

with increase of the distance between the parallel cracks as shown in Figs.7 ~ 10.

(iv) It can be obtained that K, increases extremely with increase of the length of crack 1.
However, the stress intensity factor K, decreases with increase of the distance between the parallel
cracks as shown in Figs.3 ~ 10. From this, it can be obtained that the effects of the length of
crack 1 on K, is greater than on K; , and the effects of the distance between the parallel cracks on
K, is greater than on K, .

(V) From the results in Figs.11 ~ 14, it can be shown that the stress intensity factor K,
becomes negative value with increase of frequency of incident wave. This phenomenon is caused
by the boundary condition at crack 2.

(Vi) From Egs. (41) ~ (42), it can be obtained that the tendency of D, and D, are similar
with trend of K, and K, , respectively.

From the results, it can be seen that the dynamic stress intensity factors and the electric
displacement intensity factors depend on the crack length, the frequency of incident wave and the
distance between two cracks.
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Appendix

(7(1))2 = 5% - w2/012’ c,2 = Il(l)/P(l),
p® = o® + ()2, (F9)? = 1 WH(e?s?)s
(7(2) ) LA wz/czz, c22 = #(2)/‘0(2),
p® = e+ ()P, (¥P)? = 1 - (e28%);

Ho=1+e™  H=1-e™  H =14+, H, =1-e",;
R, = 2H, Hy( eg))sefsz) 75\?)#2411) ( Eff))s ’
R, = = 2H, Hyed e@ y Py @p, p, (e )2 (P)2,
Ry = - HiH ()2 7Pur (eP)2((e2)2(ef)? + (eP)2((el)? - 270 ell)),
Ry = HH Y 7@ ()2 (@) 2(2( e )2l - vPpi ((fP)? + (7)),
Rs = 2H Hy YP7Puipa ()P ((e ) (el )? - el eP el e +
()2 ((eff)? - ¥PueP)),
Rg = - H,H (e ) yPp (el?)*, Ry = 20, H, e (e ) 7Py (i),
Ry = - HyH ()2 7P, ()2 ()2 ((efd)? - vPuie)),
Ry = HyH (7P )22 eP ()2 (70 el ((el)? + (e)?) - (i) (1P)?),

Ry = HyHy(e2)e@ ((e)2 (7)) (efP)? + (7P 2,7 (efP) 2 ((eff)? -
275\11)#16“))) ’
(2
Ry = - 8280720 oy 0y @y 1y (60)% e (e off) - ol e?)
R=R +Ry+Ry+ R, +Rs + Reg + R; + Rg + Ry + Ryy + Ryy;;

()]
S, = 262 ey Dy, () (- e e el + Y Pu el (el - &)+ () (D)),

[¢))
- - (Y2 (2) ,,(1 1 1 2 2
S, =-2e* ¢ 2 (efl) e (el Ve - e YPuelP)?,
- (2 ‘
S; = 2e b (ep’) ng)(eg) Vx)illsﬂ) + 38) 7(13)#253))2’
21 2v2¢ (1 (1)y2 D 2)\\ 2
Sy =-2e 2hy 75\12)/12(5& ) (efs)eg)sﬁ) - (915 ) €§f) + }’Svl)}lleﬂ)(egl + sgl))) ,

S =8 +8 + 35 +38;;

Ty = HyH (e ) P, (i) e, T = B H, (i) rPurell ()4,
Ty =- Hzef_rf)( 7%2))2#22(33))2(Sﬁ))a(eﬁ) Hy - ESf)H4) ’

T, =—2H1H4(3§;))235§) 753)/12(551”)2(53))3,
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Ts = - Hzefsl)( }’svl))z/llz( Eﬂ))a( eﬁ))z( ES) Hy - 58) H,),
Ty = HyH,( 95;))24?) 75;)#1 ( Eﬂ))z( ?glz))3 ,

(2)
T = - (Bl = 46 )oY 0y D, (o) (o),
Ty = - H Hyey 75\})75&)#1#2(53))3( eg))a ’

Ty = - 2H, HyelP (1) P, () ()2,

Ty = H1H4eg)(e§52))27$v2)#z(3§11))3(58)‘)2,

Ty =- (HyH; + 43_2”(2) e_m)egsl) 7$v”7$v2)#ll‘2(efll))a(eﬁ)))ay

Ty = - HyHyely 7%/])75\/2)#1#2(eﬂ))z(eﬁn)“'

T =T+ + T3+ T4+ Ts +Teg+ Ty + Ty +Tog+Tyg+ Ty + Tz
U, = 2e'2h7m efsl)( ef?’)zyﬁv’)pz( 5&11))3( 58))3 ’

. )

-4k - 1
Uy = 267 o (P = 7 P) (0212 VPt ey - o) 7P el
(2)

~2hs (1 1)43 2}y 2 2

Uy = =27y + Y3 p2) ( e51)) (El(l)) (e§5) 75\11)#151(11) + eg) 75\?)/‘2‘5%)) ’
Y 2)y2 2

Ug =~ 267" ey @u, e (e )2 (el el + eP e ) (el e sl - (e)2%?),

Uy = 2" o 1Ppael (e ) ((e)2ep - ¥Ppy el (el + @),

Us = 267" e ¥Pp (e) ()2 (- 2(el) 26l 4 v (e + ),
Uy = = 2677 ey Dy P () ()2 (@ el + el eP) (e - 1),
U=U + U, + Us + Uy + Us + Ug + Uy

Vi = HH () (efP)? (el el - 4ee?),

V, = 20 Hy (e )2 (e(P)? () (3(eld)? - ¥Ppiell),

Vs = 4H2H4e§sl) eg)egll)(eflz))s( - (eg))z + 75»/1)/115{1”) ’

Ve = HzH4(E§%))2((9551))4(55?)2 -2( efs'))z)’ﬁv”;t,ef,”(df))z +
()2 ) () ()2 + (6))),

Vs = HH(Y0)? (1) (el ) (e2)2((e)? + ()7,

Vs = 827 e2hy®, ()20 (@ el 4 ol e@)?,

Vi = - 2Hy Hye® ¥, (60 )2e@ (e el - 2@,

Ve = 2B, Hy (e )7 (e ) (= (el ) 7P + (rP) (1)l + (7)) (1y)?eP)
- 2H Hee P, (efP? )2 (e )2 (e el - 2@,

Vio = 2H  Hy v Ppa el ()2 (= (el )2(efP)? + v Py el ((e)? + (2)2)),
Vi = = 2H Hy e 7P, ()2 e (e el — 2P @),

= 2H Hy Y Py (1) ()2 ((eld)? - 27§00, ,

V= V1+V2+V3+V4+V5+V6+V7+V8+V9+V|0+VU+V,2;

a(s) = RIV, B(s) = SIV, 8(s) = TIV, y(s) = UIV,

lima(s) = a, :l_l.xgﬂ(s) = B, sl_i.rgﬁ(s) = d,.
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